| Required or Recommended Resources |
1. Jason J. Bramburger, "Data-Driven Methods forDynamic Systems", 2025.2. Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction", 2017.3. Sean Meyn, "Feedback Systems and Reinforcement Learning", 2020 |
| Recommended Reading List |
1. Morgan and Claypool Publishers, "Algorithms for Reinforcement Learning", 2009.2. Proctor, J.L., Brunton, S.L. and Kutz, J.N., 2016. Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems, 15(1), pp.142-161.3. Brunton, S.L., Budišić, M., Kaiser, E. and Kutz, J.N., 2022. Modern Koopman theory for dynamical systems. SIAM Review, Vol 64, Issue 24.lsalti, M.; Markovsky, I.; Lopez, V. G. & Müller, M. A. (2025): Data-based system representations from irregularly measured data, IEEE Transactions on Automatic Control, vol. 70, no. 1, pp. 143-1584. Alsalti, M.; Lopez, V. G. & Müller, M. A. (2025): Notes on data-driven output-feedback control of linear MIMO systems |